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Unsteady thermocapillary flows in thin layers and layers of infinite thickness with non-uniform heating of the free boundary are 
investigated at high Marangoni numbers. In the plane and axially symmetric cases, self-similar solutions of the non-linear boundary- 
layer equations are constructed and asymptotic formulae are presented. It is shown that the self-similar solutions may be non- 
unique for certain values of the parameters of the problem. The branching points are calculated numerically and the branched 
solutions are investigated. 

Flows in thin layers, bounded by two solid walls, have been considered previously [1]. Steady flows with 
a solid and a free boundary have been studied in [2] and unsteady self-similar solutions have been 
constructed in the plane case [3] for Marangoni boundary layers close to a free boundary. 

1. The problem of the unsteady thermocapillary flow of an incompressible fluid in a thin layer bounded 
by a solid wall S and a free boundary F is considered. A non-zero temperature gradient is specified on 
the free boundary 

3v / Ot + ( v , V ) v = - p - l V p +  uAv +g 

O T I 3 t + v V T = z A T ,  divv =0 

p=2vpn l - In -a (k  I +k2)+p. ,  ( x , y , z ) eF  

2 v p [ H n - ( n H n ) n ] = V r a ,  T = T  r, ( x , y , z ) eF  

Of lOt+vVf=O,  (x ,y , z )eF;  v=0,  T = T  s, (x ,y , z )~S  

(1.1) 

(1.2) 

Here, v = (a)x, ~ ,  a)z) is the velocity vector, g = (0, 0, -g), g is the acceleration due to gravity, h is the 
unit vector of the outward normal to the free boundary F, II is the rate of strain tensor, kl and k2 are 
the principal curvatures of the surface F,p.  is the specified pressure of F, V 1 = V - (nV)n is the gradient 
along F,f(x,y ,  z) = 0 is the equation of the free surface in implicit form, a = o0 - [ a r  I / (T-  7".) is the 
coefficient of surface tension where a0, a t ,  T. are unknown constants ( a t  < 0), and Tr and Ts are 
specified values of the temperature on F and S. Initial conditions are not specified as only self-similar 
solutions are const~acted below. It is assumed that the coefficient of kinematic viscosity v and the thermal 
conductivity Z are small. 

When the free boundary is non-uniformly heated, shear stresses occur on it as a consequence of the 
thermocapillary effect which, when v ---> 0, leads to the formation of non-linear boundary layers. We 
will reduce problem (1.1), (1.2) to a dimensionless form by introducing the characteristics scales of length 

2 1 1/3 2 L = ~/(ao/(pg)), velocity U = (o~rA/_,a-2v - ) , pressure P = pU and time L/U, where A is the 
characteristic scale of the temperature gradient and, then, introduce a small parameter e = M -1/3, where 
M = I or  I L2Ap-lv-2 is the Marangoni number, which takes large values. Note that small values of the 
coefficient of kinematic viscosity v or large values of the temperature gradient A correspond to small 
values ofe.  We now introduce the parameter ~. = I aT k4L I ao, which arises in changing to dimensionless 
variables in the dynamic boundary condition for the normal stresses at the free surface and use the 
notation p.  = p./(p U2). 

We next consider unsteady flow in a thin layer with a thickness of the order of e which is bounded 
below by a solid boundary and, above, by a free boundary. 
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Asymptotic expansions of the solution of problem (1.1), (1.2), when e ~ 0, are constructed in the form 

v ~ h 0 + e h l +  .... p '  ~ q0 +eql+:.., ( p ' = ( p + p g z ) l P )  (1.3) 

T - O o + e O , +  .... ~-e~l+. . .  

Here, z = ~(x, y, t) is the equation of the free boundary. 
Boundary-value problems for the leading and higher terms of the asymptotic series (1.3) are found 

by applying the boundary layer method to system (1.1), (1.2). Let the solid boundary be the plane z = 
0, on which the origin of the cylindrical system of coordinates r, 0, z is placed. Next, an axially symmetric 
solution is constructed for which there is no angular velocity component, that is, v0 = 0 and v,p',  T, 
are independent of  the coordinate 0. The components of the vector hk are denoted by ha, ha.  We 
substitute series (1.3)1into system (1.1), (1.2) and introduce the strain transformation z ffi es. On equating 
the coefficients of e- and e to zero, we find that hz0 = 0 and that h~, hzt satisfy the Prandtl boundary- 
layer equations 

Dh~o I Dt + h~oDh,o / Dr + hziDhro I Ds = D 2 h~o I Ds 2 - Dqo I Dr (1.4) 

Dqo I Os = O, O(rhro ) I Dr + D(rhzl ) I Ds = 0 

with the boundary conditions 

Dhro IDs=-DT r/Dr,  D~l IDt+hroO~l IOt=hzt (s=~l(r,t)) 
hro = hzl = 0 (s = O) 

The boundary conditions when s = ~1 are the dynamic condition for the shear stresses and the 
kinematic condition at the free boundary. 

We next supplement system (1.4) with an equation which is obtained when satisfying the dynamic 
boundary condition for the normal stresses at the free boundary. We shall consider the case when the 
parameter ~, is of th e order of  e 2, that is, ~, = koe 2. The boundary condition for the normal stresses now 
reduces to the relation 

~'oqo = ~l + ~'oP"- D2~I / Dr2 - r-lO~l / Dr 

In the case when ~. ,~ e 2, the surface s = ~l(r, t)  satisfies the latter equation when k0 = 0 which is 
integrated separately from system (1.4). The ease when ~, ~, e 2 is not considered. 

We will now construct the self-similar solution of system (1.4) subject to the condition that the 
temperature gradient in F depends on the variables r and t as given by the power law 0Tr/Or = xrt v2, 
and we will represent the functions h,o, hzl, qo in the form 

hr0 = rt -I F'(~), h:l = -2t  -~  F(~), Dq0 / Dr = -qr t  -2, ~ = st -~  

The boundary conditions on the free boundary are satisfied if 

~1 =h~fft, LOP'= ~.oqr2t -212-h~ ' i+c ( t )  

where c(t) is an arbitrary function of time, and h and q are parameters. It is obvious that the free boundary 
z = eh~/(t) + O(e 2) moves away from the solid wall with a velocity eh/(2~/t) + O(e2). For the function 
F(~), we derive the boundary-value problem 

F " =  F "2 - 2 F F " -  F ' - ~ F "  I 2 - q  
(1.5) 

F"(h) =-'c, F(h) = - h  14, F(O) = F'(O) = 0 

from system (1.14). 
Note that one of the boundary conditions serves to determine the unknown constant q. When x > 

0, the shear stresses at the free boundary are directed towards the axis of symmetry and in the opposite 
direction when x < 0. 
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Problem (1.5) was integrated numerically using the R u n g e - K u t t a  method.  W h e n  h = const  for  
x ¢ ( -4 ,  4), graphs o f  q = q(x) are represented in Fig. 1 by curves 1 and 2, which cor respond to the 
values h = 2 and h ffi 1. No te  that, when  h = 1 for  values o f  x in the range xl < x < x2 (Xx = -1.465 
and x2 ffi 1.198), there  is only a flow zone for which h,0 > 0 in the velocity profile. W h e n  x = x2, the 
shear  stresses on the solid wall vanish and, when  x > x2, a countercurrent  zone arises close to this 
boundary .  W h e n  x = xl, the velocity at the free boundary  vanishes and, when x < xl, a counterf low 
zone arises close to F. 

Numerical  calcuhttions were carried out to determine the dependence o f  the amplitude of  the pressure 
gradient  q on the thickness o f  the layer h for fixed values o f  the parameter  x. The  calculations show 
that  there  is just a single solution for  fixed values of  h in the range (0, 10) for  x ~< x. = --0.1695. 
W h e n  x > x., p rob lem (1.5) can have one, two or  three solutions depending  on the values of  the 
pa ramete r  h. 

We shall now consider the case when x = -1 for which curve 1 in Fig. 2 represents the relation q(h). Calculations 
were carried out for 0 < h ~< 10. A single solution is found for each h. As h increases, the curve q(h) approaches 
the straight line q = 2. 

We note three cases. When 0 < h < 1.429, the velocity profile has a single flow zone (h,o > 0). When h = 1.429, 
the velocity on the free boundary vanishes and a counterflow zone arises close to the free boundary in the range 
1.429 < h < 4.720. When h = 4.720, the shear stresses on the solid wall vanish. When h > 4.720, counterflow 
zones develop close to the boundaries of  the layer when there is a flow zone between them. 

We will now consider the case when x = 0. The relation q(h) is represented by curves 2 and 4 in Fig. 2. There 
are no shear stresses at the free boundary, when h < 5.164, only a single solution is found numerically which belongs 
to curve 2. when  h > 5.164, three solutions were found (one belongs to curve 2 and two to curve 4). when  h = 
5.164, the two solutions belonging to curve 4 approach the straight lineq = 2 and, moreover, the two curves initially 
intersect this straight line, then reach a maximum and subsequently decrease, approaching this straight line from 
above. 

Solutions corresponding to curve 2 in the range h ¢ (0, hi), where hi = 2.585, only have a single flow zone, the 
shear stresses on the solid wall vanish when h = hi and a counterfiow develops dose to the wall when h > hi. 

Curve 4 consists of  lower and upper branches which merge when h ffi h. = 5.164. On the upper branch of this 
curve when h > 5.171, the velocity profile has a flow zone dose to the free boundary and a counterttow zone close 
to the solid wall. When h = 5.171, the shear stress on the solid wall vanishes, the counterflow zone disappears and 
the velocity on the free boundary simultaneously vanishes. On moving to the left along the upper branch of curve 
4 from the point h = 5.171, reaching the "tip" whenh = h., passing onto the lower branch of this curve and reaching 
the point with the coordinate h = 5.184, we find that the velocity profile here has a flow zone close to the wall and 
a counterflow zone ciose to the free boundary. When h = 5.184, the shear stress on the wall vanishes and, when 
h > 5.184, two counterttow zones (one close to the wall and the other close to the free boundary) develop in the 
velocity profile with a flow zone between them. 

The graph of q(h), for the ease when x = 1, is represented by curves 3 and 5 in Fig. 2. The extreme left-hand 
point of curve 5, at which the upper and lower branches merge, corresponds to the value h = 6.853. Unlike the 
case when x = -1, two flow zones and two counterflow zones appear on the lower branch of curve 5 when 
h > 6.672. 

2. We shall now consider  the plane problem of  the thermocapil lary flow of  a fluid in a thin layer with 
a thickness of  the o rder  o f  e, bounde d  below by a solid wall and above by a free boundary.  We introduce 
a Cartesian system of  coordinates with its origin on the solid wall. The  equations and boundary conditions 
for  hx0, hzl (the componen t s  of  the vectors h0, hi)  and the functions q~ ~1 are obtained f rom (1.4) by 

- 2  

Fig. 1. Fig. 2. 



960 V.A. Batishchev 

replacing h,0 and the coordinate r by hx0 andx, respectively, with the equation of continuity for the plane 
problem and the dynamic condition in the free boundary 

Loqo = ~1 -a2~l ] oX2 + ~'oP *p 

A self-similar solution exists when OTr/OX = xxt -1/2 and is written in the form 

hxo=-Xt-lxll'(~), hzl=t-t/211t(~), aqolOx=qxt -2, ~=st -~ 

The boundary conditions on the free boundary are satisfied if ~1 andp;  are chosen in the same manner 
as in the axially symmetric case. 

The function ¥(~) is determined from the boundary-value problem 

~ " + ( ~ / 2 - ~ ) ~ " + ~ 1  s'2 =q  (2.1) 

~ ( 0 ) = ~ ' ( 0 ) = 0 ,  ~" (h)=x ,  ~(h)=h/2 

Results of numerical calculations of the relation q(z) are represented by curves 3 and 4 in Fig. 1 for 
h = 1 and h = 0.3, respectively. Note that, when h = 1 in the range -2.909 < x < 2.221, the velocity 
profile has just a single flow zone (h~0 > 0). When x = -2.909, the velocity at the free boundary vanishes 
and, when ~ < -2.909, a counterflow zone appears close to F. w h e n  x = 2.221, the shear stresses on 
the solid wall S vanish and, when x > 2.221, a countercurrent zone appears close to S. 

Numerical calculations were also carried out in order to determine how the pressure gradient depends 
on the thickness of the layer h for fixed x. The relation q(h) is shown in Fig. 3 for x = 0 (the solid curves) 
and x = 1 (the dashed curves). Two branches of the solutions are found for x = 1. For one branch, 
solutions are only obtained in the range 0 < h < hi = 2.251 while, for the second branch, they are only 
found when h ~< hz = 6.718. For values o fh  close to ha and h2, problem (2.1) has two solutions, for one 
of which the function q(h) rapidly increases as the parameter  h decreases from the values of hi and h2. 

For small values of h, on expanding the function ~(~) in series in powers of  ~ and retaining three 
terms, we find 

q = ~ ( - h  -2 +hlx)[l+o(l)] (h--~O) 

When h = 0.1 and x = 1, the three significant figures are identical in the case of the numerical and 
the asymptotic values. 

Two branches of solutions are also found when x = 0. One branch is calculated in the range 0 < h 
~< hl -- 2.644 and the other when h > h2 = 4.406. For h close to hi and h2, but outside the range (hi, 
h2), two solutions were calculated for each case. No bounded numerical solutions were found when h 

(hi, h2). Now, unlike in the case when x = 1, solutions were found for any h > h2. Note that calculations 
were also carried out for negative x, such as x = --0.3, for example, and the qualitative behaviour of 
the function q(h) was similar to that in the case when x > 0. 

3. We shall now consider the unsteady, thermocapillary, axially symmetric, spatial flow of a fluid in 
an unbounded domain (a layer of infinite thickness) when there is non-uniform heating of the free 

_ i 
Fig. 3. 
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boundary. Instead ,of the conditions on the solid wall in the boundary conditions (1.2), the condition 
at infinity v ~ U0 (z ~ .o ) is now imposed. Here, the origin of the cylindrical system of coordinates is 
placed in the free boundary and the z-axis is directed into the half-space occupied by the fluid. Unlike 
(1.3), we now construct the asymptotic expansion of the solution of the problem when e ~ 0 in the 
form 

v - h o + v  o + E ( h  I + v  I ) +  . . . .  P - Po  + i~(Pl  + q l  ) + - . .  

We shall denote the boundary-layer domain by Dr. Then, ho, hi, qa . . . .  are functions of the type of 
solutions of the boundary-layer problem in Dr. Outside Dr, the functions vk, pt, determine the solution 
of the problem, while Vo, Po describe inviscid flow and satisfy Euler's equations. 

We shall assume that the vector Vo has the components (Uo(r, t), 0, 0). It then follows from Euler's 
equations that 

DU o I Dt + UoDU 0 I Dr = -Dpo ~Dr 

This equation has the solution 

Uo = rt-tU-, Po = r2t-2(U- -U2)12+c( t )  

where U** = const and c(t) is an arbitrary function of time. In the case of this solution, the free boundary 
(when the viscosity is zero) turns out to be the plane z = 0 if one putsp. = p.(O) + ep.(a) + . . .  andp.(O) 
is specified as in the preceding axially symmetric case (taking account of the relation h = 0). 

We will now construct a self-similar solution, assuming that the vector ho is independent of the 
coordinate 0. The longitudinal components u,o, Uoo of the vector Uo = ho + Vo and the transverse 
component uz1 of the vector ha + Vx (Uzo = 0) in the boundary layer satisfy the Prandtl spatial conditions. 
We shall only present the equation for the component Uoo 

19Uoo I Dt + U,oDUoo I Dr+ azlDUO0 / DZ at" UOOUrO / r = D2Uo0 1 D5 2 -- Dpo / DO (3.1) 

The equation for u,0 is obtained from (3.1) by replacing the derivatives of u00 with the derivatives of 
u,0, while the terms, u00u,~ and Dp0/D0 are replaced by -u0" and Dp0/Or, respectively. 

The boundary conditions reduce to the form 

Dur0 / Ds = -DT r / Dr, Du00 / Ds = 0, uzl = 0 (s = z, e = 0) 

U~o~Uo, Uoo ~ O  ( s ~ o . )  

It is assumed that the temperature gradient on F is independent of the coordinate 0. 
It can be shown that ql = 0 and that the deformation of the free boundary is of the order of O(~ 2) 

if the functionp. (1) at the free surface is specified in the appropriate manner. Only a two-dimensional 
Prandtl system with boundary conditions on a plane free boundary has been studied previously [3]. 

We shall define the function Tr(r, t) by the relation DTr/br = xrt -1/2 and represent the solution of 
problem (3.1) in the form 

U~o=rt-lF'(~), Uoo=rt-IG(~), uzl=-2t-~F(~),  ~=sl~- i  

The functions F and G are found by solving the boundary-value problem 

F "  = F '2 - 2 F F " -  F ' - ~ F "  / 2 - G  2 +U~ - U  2 

G " = 2 ( F ' G - F G ' ) - G - ~ G ' I 2  

F"(O) = -x ,  G'(O) = F(O) = G(oo) = O, F'~(oo) = U.  

(3.2) 

Numerical calculation of system (3.2) leads to the conclusion that several solutions arise depending 
on the magnitude and direction of the temperature gradient. When x < x., two symmetric solutions 
with rotation are found. Four solutions are calculated in the range (x., xb), of which two solutions are 
with rotation and two solutions are without rotation. When x > Xb, only two solutions without rotation 
are found. 
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We shall initially consider a flow in which there is no angular component of the velocity (ue0 ffi 0) and put 
G = 0 in (3.2). We introduce the notation Ur o° = F'(0) and define U.  and Ur as the "ampfitudes" of the velocity 
at infinity and the velocity at the free boundary. We now present an analysis of the numerical results when U .  ffi 
1. Curve 1 (AoA~.AbA~3) in Fig. 4 represents Ur as a function of ~. A solution of problem (3.2) is only found 
when ~. ~< x < o. and, when ~ < x., no bounded numerical solutions are obtained. Note that x. = -1.060. Two 
solutions are calculated for each x > x.. On theAoA 1 branch, the velocity at the free boundary is positive and the 
velocity profile is monotonic. At pointAl ,  we show the values x~ = -1.035 and Ur = 0. When x = 0, the solution 
is trivial: u~0 = 1 and, when x > 0, the velocity in the boundary layer decreases monotonically as ~ increases while, 
when x < 0, the velocity increases monotonically. On the A 1,4.A 2 branch, the values of x vary in the range (x., x2), 
where x2 = 0.619. There is a counter/tow zone (u,0 < 0) close to the free boundary and, at large ~, a flow zone. 
For values corresponding to the A ~ 3  branch, there are two flow zones, one of which is located close to the free 
boundary and another at large ~, and there is a flow zone between them. 

The analysis is carded out in a similar manner when U~ = 0. Curve 2 in Fig. 4 represents Ur(~). Note that solutions 
with u00 = 0 are not found when x < x. = -0.054. When x = 0, a single non-trivial solution and a single trivial 
solution ua0 = 0 are found. 

We now present the asymptotic solutions, as x ~ oo, for the upper branches of curves 1 and 2 in Fig. 4. We introduce 
the function f(T1) = ~-1/5/(F - U~), where ~ = xt/3~ and note thatf(oo) = 0. We represent f('q) and/-Jr in the form 
of the asymptotic series 

f = fo(~l)+'t-~f1('q)+O(x-~), U r = x~f()(O)+V. +f{(O)+O(x -~) (~ ---) ~) 

The functions f0 andf~ are determined from the boundary-value problems 

f6"+ 2fof6"- f62=O, fo(O)= f~(oo)= f6'(O)+l=O 

f{'+ 2fof{'-2flf6" -2f6fl'=(2U..-l)fO-~(l/2+ 2U..)f~', fl(O)= f~'(O)= f{(~)=O 

Numerical calculations lead to the values f6(0) = 0.8987 and f~(O) = -0.6322 when U.. ffi 1 and, also, f~(0) ffi 
0.1542 for the same value off~(0) for U.. ffi 0. The dashed curve in Fig. 4 close to the upper branch of curve 1 for 
positive values of x represents the asymptotic solution for U .  ffi 1. 

We shall now consider the solution of system (3.2) when x < x.. In this case, uo0 ~ 0 (a flow appears with a 
rotation around the z-axis). A branch of  solutions is found numerically, which, when U.  = 1, is represented by the 
curve AbA. in Fig. 4 (and the corresponding branch for U.. = 0). Note that the point Ab with the coordinate 

ffi Xb ffi -0.895 turns out to be a branch point (when U .  = 0, the value of Xb is equal to-0.038) and % > x.. When 
x ---> Xb - 0, the angular component of the velocity u00 tends to zero and vanishes when x ffi Xb. Two symmetric solutions 
(u~ +-Uoo, uzl) appear along the A.,4b branch, one of which is obtained from the other by reversing the direction 
of the angular component of the velocity. 

We will now construct the asymptotic solution of problem (3.2) as ~ --> -oo. We introduce the variable 111 = 
(--x) 1/3 and represent the functions F, G, Ur in the form of the series 

F = (_~)Y3 Fo (~i) + (-~)-'~[~JU.. + 6 (~J)]+ O((-~) -~ ) 

G = (-'[)'~ G O (111) 4- G| (I~i)] 4- O((-'~) ~ ) 

Ur =(-x)~F6(O)+U.. +F:(O)+O(l-z) - ~ )  ( z ~ ' - )  

 /Y/H I 

Fig. 4. 
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The functions F0, F1, Go, G1 are determined by solving boundary-value problems, which are not given here 
on account of their complexity. We give the values F6(0) = -0.5181, F{(O) = -0.6882, G0(0) -- 1.0659, 
GI(0) = 0.0085 when L~ -- 1. The dashed curve close to theA..Ab branch in Fig. 4 represents the asymptotic solution 
when U.  -- 1. 
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