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Unsteady thermocapillary flows in thin layers and layers of infinite thickness with non-uniform heating of the free boundary are
investigated at high Marangoni numbers. In the plane and axially symmetric cases, self-similar solutions of the non-linear boundary-
layer equations are constructed and asymptotic formulae are presented. It is shown that the self-similar solutions may be non-
unique for certain values of the parameters of the problem. The branching points are calculated numerically and the branched
solutions are investigated.

Flows in thin layers, bounded by two solid walls, have been considered previously [1]. Steady flows with
a solid and a free boundary have been studied in [2] and unsteady self-similar solutions have been
constructed in the plane case {3] for Marangoni boundary layers close to a free boundary.

1. The problem of the unsteady thermocapillary flow of an incompressible fluid in a thin layer bounded
by a solid wall S and a free boundary I' is considered. A non-zero temperature gradient is specified on
the free boundary

ov/dt+(v,V)v=—p 'Vp+vAv+g (1.1)
oT /0t+vVT =xAT, divv=0
p=2vpnlin-o(k, +ky)+p., (x,3,2)eTl 12)

2vp[[In-(nllm)n]=V e, T=T;, (x,y,2)eT
of 19t+vVf=0, (x,y,2)el; v=0, T=T;, (x,y,2)€S

Here, v = (v,, v, v,) is the velocity vector, g = (0, 0, —g), g is the acceleration due to gravity, h is the
unit vector of the outward normal to the free boundary T, IT is the rate of strain tensor, k; and k; are
the principal curvatures of the surface T, p- is the spemﬁed pressure of I, V; = V — (nV)n is the gradlent
along T, f(x,y, z) = 0 is the equation of the free surface in implicit form, 6 = 6y~ | o7 [/(T - T+) is the
coefficient of surface tension where oy, o7, 7+ are unknown constants (6r < 0), and Tt and Ty are
specified values of the temperature on I' and S. Initial conditions are not specified as only self-similar
solutions are constructed below. It is assumed that the coefficient of kinematic viscosity v and the thermal
conductivity x are small.

When the free boundary is non-uniformly heated, shear stresses occur on it as a consequence of the
thermocapillary effect which, when v — 0, leads to the formation of non-linear boundary layers. We
w111 reduce problem (1.1), (1. 2) toa dlmensmnless form by mtroducmg the characteristics scales of length

V(oy/(pg)), velocity U = (c24’Lov )R, pressure P = pU? and time L/U, where A is the
characterlstlc scale of the temperature gradient and, then, introduce a small parameter € = M1 where
= |or| L% Ap~v%is the Marangoni number, thch takes large values. Note that small values of the
coefﬁcxent of kinematic viscosity v or large values of the temperature gradient A correspond to small
values of €. We now introduce the parameter A = | 67 |AL | oo, which arises in changing to dimensionless
variables in the dynamlc boundary condition for the normal stresses at the free surface and use the
notation ps = p./(pU?).

We next consider unsteady flow in a thin layer with a thickness of the order of € which is bounded

below by a solid boundary and, above, by a free boundary.
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Asymptotic expansions of the solution of problem (1.1), (1.2), when € — 0, are constructed in the form

v~hy+eh+.., p'~qoteq+.., (p'=(p+pgz)/ P) (1.3)
T~05+€0,+..., {~€el+...

Here, z = {(x, y, t) is the equation of the free boundary.

Boundary-value problems for the leading and higher terms of the asymptotic series (1.3) are found
by applying the boundary layer method to system (1.1), (1.2). Let the solid boundary be the plane z =
0, on which the origin of the cylindrical system of coordinatesr, 6, z is placed. Next, an axially symmetric
solution is constructed for which there is no angular velocity component, that is, vg = O and v, p’, T, {
are independent of the coordinate 6. The components of the vector h, are denoted by hy, h,. We
substitute series (1.3) into system (1.1), (1.2) and introduce the strain transformation z = &s. On equating
the coefficients of £ and ¢ to zero, we find that ki, = 0 and that k,, h,; satisfy the Prandt] boundary-
layer equations

Ohyg / Ot +h,oOh, I Or+h, 0h 1 ds =d%hy [ 3s* - 3gy / OF (1.4)
dq¢/0s=0, d(rhqy)/dr+0d(rhy,)/ds=0

with the boundary conditions

ahrolas=—aTr/ar, agl/at+h,oa§1/at=hzl (s=§,(r,t))
hr0=hzl=0 (s=0)

The boundary conditions when s = {; are the dynamic condition for the shear stresses and the
kinematic condition at the free boundary.

We next supplement system (1.4) with an equation which is obtained when satisfying the dynamic
boundary condition for the normal stresses at the free boundary. We shall consider the case when the
parameter A is of the order of €2, that is, A = A¢e? The boundary condition for the normal stresses now
reduces to the relation

Aogo =&, +Aopi - azt;, /or? - r'la§, /or

In the case when A < €, the surface s = Ca(r, t) satisfies the latter equation when Aq = 0 which is
integrated separately from system (1.4). The case when A > €2 is not considered.

We will now construct the self-similar solution of system (1.4) subject to the condition that the
temperature gradient in I" depends on the variables r and ¢ as given by the power law oTy/or = ut
and we will represent the functions k,q, h,;, go in the form

ho=rt"'F'(&), hy=-207F(), dqy/or=—qr?, E=st™"
The boundary conditions on the free boundary are satisfied if
Ci=ht, NP =hoqrit™2 12—kt +c(1)

where c(t) is an arbltrary function of time, and 4 and g are parameters. It is obvious that the free boundary
z = ehV(t) + O(e?) moves away from the solid wall with a velocity eh/(2Vf) + O(e?). For the function
F(L), we derive the boundary-value problem

F”I:F;Z_2FF”_F/__§F"/2_q

(1.5)
F”(h)y=-t, F(h)=-h/4, F(0)=F'(0)=0
from system (1.14).
Note that one of the boundary conditions serves to determine the unknown constant g. When 1t >
0, the shear stresses at the free boundary are directed towards the axis of symmetry and in the opposite
direction when T < 0.
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Problem (1.5) was integrated numerically using the Runge—Kutta method. When % = const for
T € (-4, 4), graphs of g = g(t) are represented in Fig. 1 by curves 1 and 2, which correspond to the
values & = 2 and h = 1. Note that, when 2 = 1 for values of 7 in the range 7; < T < T, (T; = -1.465
and 1, = 1.198), there is only a flow zone for which k,; > 0 in the velocity profile. When t = 1,, the
shear stresses on the solid wall vanish and, when © > 1,, a countercurrent zone arises close to this
boundary. When 1 = 1, the velocity at the free boundary vanishes and, when © < 1;, a counterflow
zone arises close to I'.

Numerical calculations were carried out to determine the dependence of the amplitude of the pressure
gradient g on the thickness of the layer 4 for fixed values of the parameter 1. The calculations show
that there is just a single solution for fixed values of % in the range (0, 10) for T < 1. = -0.1695.
When 1 > 1., problem (1.5) can have one, two or three solutions depending on the values of the
parameter A.

We shall now consider the case when T = —1 for which curve 1 in Fig. 2 represents the relation g(h). Calculations
were carried out for 0 < & < 10. A single solution is found for each k. As A increases, the curve g(h) approaches
the straight line g = 2.

We note three cases. When 0 < & < 1.429, the velocity profile has a single flow zone (k4 > 0). When & = 1.429,
the velocity on the free boundary vanishes and a counterflow zone arises close to the free boundary in the range
1.429 < h < 4.720. When h = 4,720, the shear stresses on the solid wall vanish. When & > 4.720, counterflow
zones develop close to the boundaries of the layer when there is a flow zone between them.

We will now consider the case when © = 0. The relation g(h) is represented by curves 2 and 4 in Fig. 2. There
are no shear stresses at the free boundary. When £ < 5.164, only a single solution is found numerically which belongs
to curve 2. When h > 5.164, three solutions were found (one belongs to curve 2 and two to curve 4). When h =
5.164, the two solutions belonging to curve 4 approach the straight lineq = 2 and, moreover, the two curves initially
intersect this straight line, then reach a maximum and subsequently decrease, approaching this straight line from
above.

Solutions corresponding to curve 2 in the range & € (0, h;), where h; = 2.585, only have a single flow zone, the
shear stresses on the solid wall vanish when A = h; and a counterflow develops close to the wall when & > h;.

Curve 4 consists of lower and upper branches which merge when /& = A« = 5.164. On the upper branch of this
curve when A > 5.171, the velocity profile has a flow zone close to the free boundary and a counterflow zone close
to the solid wall. When A = 5.171, the shear stress on the solid wall vanishes, the counterflow zone disappears and
the velocity on the free boundary simultaneously vanishes. On moving to the left along the upper branch of curve
4 from the pointh = 5.171, reaching the “tip” when h = h., passing onto the lower branch of this curve and reaching
the point with the coordinate & = 5.184, we find that the velocity profile here has a flow zone close to the wall and
a counterflow zone close to the free boundary. When # = 5.184, the shear stress on the wall vanishes and, when
h > 5.184, two counterflow zones (one close to the wall and the other close to the free boundary) develop in the
velocity profile with a flow zone between them.

The graph of g(h), for the case when 1 = 1, is represented by curves 3 and 5 in Fig. 2. The extreme left-hand
point of curve 5, at which the upper and lower branches merge, corresponds to the value A = 6.853. Unlike the
case when T = -1, two flow zones and two counterflow zones appear on the lower branch of curve 5 when
h > 6.672.

2. We shall now consider the plane problem of the thermocapillary flow of a fluid in a thin layer with
a thickness of the order of &, bounded below by a solid wall and above by a free boundary. We introduce

a Cartesian system of coordinates with its origin on the solid wall. The equations and boundary conditions
for h.g, h,; (the cornponents of the vectors hy, h,) and the functions g, {; are obtained from (1.4) by

) 7//% A
— 7 A7 ”
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Fig. 1. Fig. 2.
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replacing 4,9 and the coordinate r by A, and x, respectively, with the equation of continuity for the plane
problem and the dynamic condition in the free boundary

Aodo =8, -9, /3x* +Nopi
A self-similar solution exists when 8T/ax = T2 and is written in the form
ho=—xt"'y(E), hy= '/\y(é) dgy/ox = gxt™? §=st_y’-

The boundary conditions on the free boundary are satisfied if {; and p* are chosen in the same manner

as in the axially symmetric case.
The function (&) is determined from the boundary-value problem

\V"’+(§/2_W)\|’”+le =q (2'1)
Y(0)=y'(0)=0, y"(h)=1, ylh)=h/2

Results of numerical calculations of the relation g(t) are represented by curves 3 and 4 in Fig, 1 for
h = 1and h = 0.3, respectively. Note that, when 2 = 1 in the range -2.909 < t < 2.221, the velocity
profile has just a single flow zone (h,9 > 0). When t = -2.909, the velocity at the free boundary vanishes
and, when T < —2.909, a counterflow zone appears close to I'. When 1t = 2.221, the shear stresses on
the solid wall S vanish and, when t > 2.221, a countercurrent zone appears close to S.

Numerical calculations were also carried out in order to determine how the pressure gradient depends
on the thickness of the layer & for fixed . The relation g(#) is shown in Fig. 3 for T = 0 (the solid curves)
and t© = 1 (the dashed curves). Two branches of the solutions are found for T = 1. For one branch,
solutions are only obtained in the range 0 < & < h; = 2.251 while, for the second branch, they are only
found when k < h; = 6.718. For values of 4 close to /1 and h;, problem (2.1) has two solutions, for one
of which the function g(k) rapidly increases as the parameter % decreases from the values of 4 and A,.

For small values of #, on expanding the function y(§) in series in powers of £ and retaining three
terms, we find

g=%(=h+hiT)1+0(1)] (h—0)

When k = (.1 and © = 1, the three significant figures are identical in the case of the numerical and
the asymptotic values.

Two branches of solutions are also found when T = 0. One branch is calculated in the range 0 < &
< hy = 2.644 and the other when & > h; = 4.406. For k close to k; and h,, but outside the range (h,,
h;), two solutions were calculated for each case. No bounded numerical solutions were found when A
€ (hy, hy). Now, unlike in the case when T = 1, solutions were found for any 4 > h,. Note that calculations
were also carried out for negative 1, such as T = 0.3, for example, and the qualitative behaviour of
the function g(h) was similar to that in the case when © > 0.

3. We shall now consider the unsteady, thermocapillary, axially symmetric, spatial flow of a fluid in
an unbounded domain (a layer of infinite thickness) when there is non-uniform heating of the free

4 1 T
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Fig. 3.
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boundary. Instead of the conditions on the solid wall in the boundary conditions (1.2), the condition
at infinity v — Uy (z — o ) is now imposed. Here, the origin of the cylindrical system of coordinates is
placed in the free boundary and the z-axis is directed into the half-space occupied by the fluid. Unlike
(1.3), we now construct the asymptotic expansion of the solution of the problem when € — 0 in the
form

v~hg+vy+eth +v))+.., p~po+e&(p +q)t+..

We shall denote the boundary-layer domain by Dr. Then, hy, h;, ¢y, . . . are functions of the type of
solutions of the boundary-layer problem in Dy. Outside Dr, the functions vy, p; determine the solution
of the problem, while vy, p, describe inviscid flow and satisfy Euler’s equations.

We shall assume that the vector v, has the components (Uy(r, ¢), 0, 0). It then follows from Euler’s
equations that

aUO /at+UOaU0 /ar=—ap0 /ar
This equation has the solution
Ug = n'u,, Po= i, —U%)/2+¢(1)

where U., = const and c(?) is an arbitrary function of time. In the case of this solution, the free bound
(when the viscosity is zero) turns out to be the plane z = 0 if one puts p. = pe© 4+ gp.D . and p.{
is specified as in the preceding axially symmetric case (taking account of the relation h 0)

We will now construct a self-similar solution, assuming that the vector hg is independent of the
coordinate 6. The longitudinal components u,g, ugy of the vector uy = hy + v, and the transverse
component u,; of the vector h; + v; (4,9 = 0) in the boundary layer satisfy the Prandtl spatial conditions.
We shall only present the equation for the component ugg

aueo /at+uroau90 /ar+ u—zlaueo /az+u90u,0 / r= azueo /as2 "'apo /39 (3.1)

The equation for u,, is obtained from (3.1) by replacmg the derivatives of ugyy with the derivatives of
Uy, while the terms uggtrg and opy/09 are replaced by —ue” and dpy/ar, respectively.
The boundary conditions reduce to the form

Ou g/ s =—0Ty /Or, Ougy/9ds=0, u, =0 (s=2z, €=0)

uro—)U(), u60—>0 (s—-)oo)

It is assumed that the temperature gradient on I' is independent of the coordinate .

It can be shown that g; = 0 and that the deformation of the free boundary is of the order of O(&?)
if the function p.(!) at the free surface is specified in the appropriate manner. Only a two-dimensional
Prandtl system with boundary conditions on a plane free boundary has been studied previously [3].

We shall define the function Tp(r, f) by the relation 97/or = ¢ % and represent the solution of
problem (3.1) in the form

o =rt" FE), gy =rt"GE), uy=—27FE), E=s/t
The functions F and G are found by solving the boundary-value problem

F”’ F* _2FF"—F' -EF”12-G*+U_-U2 (3.2)
G”=2(F'G~FG')-G-EG’ /2
F"(0)=-1, G(0)=F(0)=G(=)=0, F'(e)=U,

Numerical calculation of system (3.2) leads to the conclusion that several solutions arise depending
on the magnitude and direction of the temperature gradient. When T < 7., two symmetric solutions
with rotation are found. Four solutions are calculated in the range (7, 1), of which two solutions are
with rotation and two solutions are without rotation. When t > 1,, only two solutions without rotation
are found.
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We shall initially consider a flow in which there is no angular component of the velocity (g = 0) and put
G = 0in (3.2). We introduce the notation U = F'(0) and define U, and Uy as the “amplitudes” of the velocity
at infinity and the velocity at the free boundary. We now present an analysis of the numerical results when U,, =
1. Curve 1 (4¢A:4.4,A2A43) in Fig. 4 represents Ut as a function of 1. A solution of problem (3.2) is only found
when T« < T < o0 and, when 1 < 7., no bounded numerical solutions are obtained. Note that t. = —-1.060. Two
solutions are calculated for each T > 1.. On the 4y4,; branch, the velocity at the free boundary is positive and the
velocity profile is monotonic. At point A;, we show the values 1; = -1.035 and Ur = 0. When 1 = 0, the solution
is trivial: u,o = 1 and, when t > 0, the velocity in the boundary layer decreases monotonically as € increases while,
when 1 < 0, the velocity increases monotonically. On the 4,4.A, branch, the values of 1 vary in the range (1», 1),
where 1, = 0.619. There is a counterflow zone (1,9 < 0) close to the free boundary and, at large &, a flow zone.
For values corresponding to the A,4; branch, there are two flow zones, one of which is located close to the free
boundary and another at large &, and there is a flow zone between them.

The analysis is carried out in a similar manner when U.. = 0. Curve 2 in Fig. 4 represents Ur(t). Note that solutions
with ugy = 0 are not found when T < 1. = -0.054. When t = 0, a single non-trivial solution and a single trivial
solution ug = 0 are found.

We now present the asymptotic solutions, as T — e, for the upper branches of curves 1 and 2 in Fig. 4. We introduce
the function f{n) = 1 P)(F - U.E), where n = ©/°€ and note that f(e) = 0. We represent f(n) and Ur in the form
of the asymptotic series

f =+t A {m+07%)  Up =B O+ + 70 +007H) (1)
The functions f; and f; are determined from the boundary-value problems
42088 - 152 =0, fo(0)=f5(=)= f5(0)+1=0
K20 =208 =260 = QUao -1 f5-M(1/242U)fg" s f1(0)= 15 (0)= fi(=)=0

Numerical calculations lead to the values f((0) = 0.8987 and f{(0) = —0.6322 when U, = 1 and, also, f1(0) =
0.1542 for the same value of f1(0) for U,, = 0. The dashed curve in Fig. 4 close to the upper branch of curve 1 for
positive values of T represents the asymptotic solution for U., = 1.

We shall now consider the solution of system (3.2) when 1t < .. In this case, ugy # 0 (a flow appears with a
rotation around the z-axis). A branch of solutions is found numerically, which, when U.. = 1, is represented by the
curve A, A., in Fig. 4 (and the corresponding branch for U,, = 0). Note that the point 4, with the coordinate
1 = 1, = —0.895 turns out to be a branch point (when U, = 0, the value of 1, is equal to —0.038) and 7, > 1. When
T — 1, — 0, the angular component of the velocity ug, tends to zero and vanishes when 1 = 1;,. Two symmetric solutions
(14,0, g0, Uz1) appear along the 4.4, branch, one of which is obtained from the other by reversing the direction
of the angular component of the velocity.

We will now construct the asymptotic solution of problem (3.2) as T — —. We introduce the variable n; =
(~1)'? and represent the functions F, G, Ur-in the form of the series

F=(=15 R+ AU + Em)I+0(-1™)
G = (=0 Gy(n)+ G (M)]+0((-1) )

Ur =(~0B F(0)+U., +F/(0)+0(1-1)5) (1)
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The functions Fy, Fy, Gy, G, are determined by solving boundary-value problems, which are not given here
on account of their complexity. We give the values Fg(0) = -0.5181, F{(0) = -0.6882, Gy(0) = 1.0659,
G4(0) = 0.0085 when U.. = 1. The dashed curve close to the A..4, branch in Fig. 4 represents the asymptotic solution
when U, = 1.
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